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I. INTRODUCTION

Many aspects of the behavior of polymers can be described by self-avoiding
walks on a lattice. To incorporate the interactions of the polymer with
itself, a binding energy e can be assigned if either two nearest-neighbour
lattice sites are visited by the polymer (point-contact model), or if two
steps of the SAW are located on opposite sides of a plaquette of the lattice
(step-contact model). Both models show the same qualitative behaviour.

To describe the coil-globule ("theta") transition, it is sufficient to
assume these interactions to be isotropic, but some polymers have interac-
tions that depend on the spatial orientation of the polymer, for instance
A-B polyester. Such polymers are conveniently modeled by oriented self-
avoiding walks (OSAW) with short-ranged interaction between steps
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Two closely related models of oriented self-avoiding walks (OSAWs) on a
square lattice are studied. We use the pruned-enriched Rosenbluth method to
determine numerically the phase diagram. Both models have three phases:
a tight-spiral phase in which the binding of parallel steps dominates, a collapsed
phase when the binding of antiparallel steps dominates, and a free (open coil)
phase. We show that the system features a first-order phase transition from the
free phase to the tight-spiral phase, while both other transitions are continuous.
The location of the phases is determined accurately. We also study turning
numbers and gamma exponents in various regions of the phase diagram.



depending on their relative orientation.(1-7) This orientation-dependent
strength of the interaction can be incorporated in the model by distin-
guishing parallel and anti-parallel step-contacts, and assigning an additional
binding energy EP only between parallel step-contacts; with point-contact
energies, incorporating orientation-dependence in an elegant manner is
complicated by the ends of the polymer.

Most research on SAWs has been based on the point-contact model,
since it is numerically better behaved than the step-contact model. Most
research on OSAWs however has been based on the step-contact model, in
which the inclusion of the additional binding of parallel step-contacts is
more natural to the model. We will study both models in this manuscript.

Bennett-Wood et al.(2) enumerated all configurations up to SAWs with
a length of n = 29 and ordered them according to their number of parallel
and anti-parallel step-contacts. These results showed the existence of three
phases: a free SAW phase, a normal collapsed phase and a compact spiral
phase. The transition from the free to the spiral phase was conjectured to
be of first order.

For the case E = 0 (only binding energies between parallel step-contacts),
Barkema and Flesia(5) extended the exact enumeration of the OSAWs to
length n = 34. In the same paper, the energy of the ground state (for
positive ep) and its degeneracy as a function of length was given, and an
approximation to the number of configurations Cn(mp) of polymers of
length n with mp parallel step-contacts was proposed:
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where pn and qn are n-dependent parameters. The partition function for
E = 0 can be constructed, and from this it was concluded that the transition
from the free phase to the spiral phase at e = 0 occurs at er = log(u) =
0.9701 (where u= 2.638 is the growth constant for SAWs (8)) and is a first
order transition. We use units such that kBT= 1.

For the step-contact model, Prellberg and Drossel(6) argued that the
transition from the collapsed phase to the spiral phase is continuous. They
also argued that the location of the theta-transition (from the free to the
collapsed phase) is independent of EP.

Trovato and Seno(7) performed transfer matrix calculations on the
point-contact model. They also made some calculations for the step-contact
model, but with much less conclusive results. They found that the transi-
tion from either the free or the collapsed to the spiral phase is probably of
first order.



In this paper, we employ the pruned-enriched Rosenbluth method
(PERM)(9-11) to study the phase diagram of both models for two-dimen-
sional OSAWs. The only deviation from the algorithm as described in the
above references is that new steps were biased both towards large numbers
of contacts and large absolute values of the turning number, with different
biases in different parts of the phase diagram. As usual in PERM, this is
corrected for by reweighting.

The manuscript is organized as follows. In Section II we study the
phase transition from the free phase towards the spiral phase in the step-
contact model. To do this, we determine numerically the partition function
along three lines c = constant, for all ep.

In Section III, we use the same technique as in Section II to study the
transition from the collapsed to the spiral phase, but for different values of
£ which are above the collapse energy E0.

The next section, Section IV, studies the transitions for s close to the
collapse point K0. To do this, we use the point-contact model, since for this
model finite-size corrections at E = E0 are smaller, and simulations using
PERM have smaller statistical fluctuations.

In Section V, we present our numerically determined phase diagram
for both models, discuss the nature and location of all phase transitions,
and summarize the results.

II. TRANSITION FROM THE FREE PHASE TO THE
SPIRAL PHASE

With PERM, we measured Cn(mp), the contribution to the partition
function for walks of n steps from configurations with mp parallel contacts.
First, we did this at e = 0, so that we can compare our results with previous
work. In Fig. 1 we have plotted log(C n (m p ) ) as a function of mp for various
chain lengths n. To a good approximation, the curves are straight lines, in
agreement with the guess Eq. (1). The inset shows the deviation from the
straight line for « = 256, by plotting log(Cn(mp)) + 1.229mp. The figure
combines data obtained at several values of EP close to the transition.

From the partition function plot we conclude that there is a first-order
transition from the free phase, where configurations with no parallel
contacts dominate, to the spiral phase, where configurations with many
parallel contacts dominate. A closer look shows that the curves in Fig. 1
are not completely straight but S-shaped, with a "bump" at some number
mb* of parallel contacts. Looking at increasing lengths n of the OSAWs, we
see no evidence that asymptotically mb*/n -> 0 nor m b /n ->1, and therefore
conclude that this bump will persist in the thermodynamic limit (n-> o).
To extract the transition temperature e p , c r i t (n ) , we have determined for
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which EP the top of the bump and the walks with no parallel contacts con-
tribute equally to the partition function. The results are sp ,c r i t(n) = 2.11(3),
1.6(1), 1.42(4), 1.368(7), 1.315(2), 1.278(2), 1.250(2); and 1.229(2) for
n = 32, 64,..., 256 respectively.

Since the number of parallel contacts in a tight spiral scales as
n — 4/n, we expect corrections of order n - 1 / 2 to the critical temperature.
Most likely, there are also corrections of order n-1, and possibly other
corrections. Assuming however that corrections of order n-1/2 are the
leading ones, we extrapolated our values for e p , c r i t ( n ) to the limit n -> o,
and obtained for e = 0 in the thermodynamic limit ep, Crit = 0.90(5), with the
error mainly due to the uncertainty in the finite-size correction.

We also studied the contribution to the partition function as a func-
tion of the turning number t: the number of turns that the walk has made
clockwise, minus the number of turns anti-clockwise. Note that the turning
number is not equal to the winding number w as defined by Duplantier and
Saleur;(12) for large chains in the free and the collapsed phase however, the
two quantities are related by < ( ( n / 2 ) t 2) = 2 < w 2 > . The factor of two is
explained by observing that the turning number receives contribution from
both ends of the chain, while only one end contributes to the winding
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Fig. 1. Logarithm of the contribution to the partition function Cn(mp) of configurations
with mp parallel contacts, in the absence of anti-parallel interactions (i.e., e = 0). The lines
correspond to chain lengths of n = 32, 64,..., 256 steps. The inset shows the deviation from a
straight line, by plotting log(C256(mp))+ 1.229mp as a function of mp. The presence of two
peaks indicates a first-order phase transition.



number.(13) For the spiral ground state, the turning number is roughly
equal to 2 /(n).

Results for n = 256 are presented in Fig. 2, where we averaged the
histograms for positive and negative turning numbers. We observe that for
EP = 1.253, the histogram has two peaks at ± 23: we are in the spiral phase.
At £p = 0, the turning number is between -10 and 10, with a maximum at
zero: we are outside the spiral phase. At e = 1.194 we are close to the transi-
tion, and the peaks at t= ±21 and the peak around zero coexist. The fact
that in the histogram for turning numbers the peaks maintain their loca-
tion, while their relative importance changes, is consistent with our earlier
conclusion that the phase transition is first-order. For a continuous tran-
sition, we would expect that the two peaks in the spiral phase would
approach zero gradually.

We repeated this procedure for e = 0.993 and for the case where anti-
parallel contacts are strictly forbidden (e -> — o) but parallel contacts have
a finite binding energy (e + sp is finite). Qualitatively, the behavior is the
same as for e = 0, and we conclude that the transition is also first-order.
The bump seems to shift to the left with increasing e. For £ = 0.993 we
obtained in the thermodynamic limit sp,crit = 0.05(5), while if anti-parallel
contacts are strictly forbidden, we find ep, crit + e = 0.75(5).

Fig. 2. Probability of turning number t as a function of t, for chains of length n = 256 for
the case e = 0. Different curves correspond to fp = 0 (dotted line), £p= 1.194 (dashed line), and
£p = 1.253 (solid line).
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III. TRANSITION FROM THE COLLAPSED PHASE TO THE
SPIRAL PHASE

To study the transition from the collapsed phase to the spiral phase in
the step-contact model, we used the same technique as in Section II: at a
particular value for e, we calculated the contribution of configurations to
the partition function as a function of the number of its parallel contacts.
This allows us to determine both the nature and the location of the phase
transition at the particular value of £.

We used this method for e= 1.253, 1.435 and 1.609. These values are
well above the theta-transition, which is estimated to be e= 1.21 (see Sec-
tion IV). Results analogous to those shown in Fig. 1, but now for e = 1.609,
are presented in Fig. 3. There are still two maxima in the histogram—one
at mp = 0 and the other at m*b > 0—but the valley between them is very
shallow and much more narrow. Comparison of different chain lengths
now suggests that in the thermodynamic limit m*b/n approaches zero,
indicating that the transition has become continuous.

Fig. 3. Logarithm of the contribution to the partition function Cn(mp) of configurations
with mp parallel contacts, for the case £=1.609 and no interaction between parallel steps
(e + ep = 0). Different curves correspond to chain lengths n = 32, 64,..., 256 steps. The inset
shows the deviation from the straight line by plotting log(C256(mp)) + 1.91m,, as a function
of mp. The two peaks that were present in the case £ = 0 have nearly disappeared and are
compatible with being finite size effects, indicating that the first-order phase transition has
changed into a continuous one.
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We obtained estimates for the location of the phase transition line that
are consistent with sp,crit = 0.

The histogram of the turning numbers is plotted in Fig. 4. The picture
is quite different from that of Fig. 2: the peaks at high positive and negative
turning numbers do not maintain their location if the transition line is
approached, but shift towards zero, where they merge. This is consistent
with a continuous phase transition.

IV. TRANSITION FROM THE FREE TO THE
COLLAPSED PHASE

At first, we simulated the step-contact model at various values of e, to
obtain a precise value of e0. Requiring that the end-to-end distance scales
as n4/7 and the partition sum as ingn1/7 (see Duplantier and Saleur(14)), we
got se =1.21(2), independent of the value of ep, as long as ep < 0. Next, we
simulated the ordinary (non-oriented) point-contact model at various
values of E, to obtain a precise value of e0 and we got ee = 0.667( 1), in good
agreement with earlier estimates.(15,16)

This difference in sg is due to the fact that point contacts are roughly
twice as frequent as bond contacts near the theta point, and it makes
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Fig. 4. Probability of turning number t as a function of t, for chains of length n = 256, in the
case e= 1.609. Different curves correspond to EP= 1.82 (dotted line), 1.92 (dashed line), and
£p= 1.96 (solid line).



simulations in the regime e > ee much harder in the step-contact model
than in the point-contact model: due to the large value of e, the Boltzmann
weights of different configurations fluctuate strongly, which creates
problems for PERM. The point-contact model can be simulated more
efficiently by PERM (error bars decrease by roughly one order of
magnitude for the same CPU times), and systematic errors due to finite-
size corrections decrease, although they stay sizeable in both models (the
same was found by Trovato and Seno(7) for transfer matrix calculations).

For this reason we used the point-contact model to study transitions
for s w E0 in detail. This includes the coil-globule transition for sp < 0 which
happens exactly at e = e0, as well as the region around the triple point
(e = £9, £p = 0).

In the same runs we also measured the average number of parallel
contacts. Results are shown in Fig. 5. They indicate that <mp> converges
for n -> o to a finite value, in agreement with Barkema and Flesia,(5) as
long as e < ea. This is however no longer true for e > ee. Exactly at the
0-point, <mp> increases roughly as /n for large n. But finite size correc-
tions are so large that it is not clear whether this is really the asymptotic
behavior. Thus, while parallel bonds are unimportant below the 0-point,
they become important above it. Consistent with this, we found that the
probability Pn(0) = Cn(0)/£m Cn(m) of having no parallel bond at all

Fig. 5. Log-log plot of the average number of parallel bonds versus chain length for different
values of E, and for sp = 0. The 0-point is at s = 0.667.
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decreases to zero for e > e0, while it converges to a finite value for e < eg

(Fig. 6). Based on the analogy with parts of percolation cluster hulls, it was
conjectured by Prellberg and Drossel(6) that Pn(0) = n - 2 / 7 exactly at the
o-point. This is consistent with our data, although our data show again
very slow convergence and would suggest an exponent ~ 1/4 rather than 2/7.

The fact that Pn(0) does not decrease exponentially with n for e < e0

shows that indeed the open coil/globule collapse occurs for all sp < 0 at the
same value of e, namely e = £0. ( 2 , 6 , 7 ) Parallel contacts are simply too rare
to effect phase boundaries for ep <0. On the other hand, the fact that <mp>
diverges at ee implies that this is no longer true for ep > 0. Thus the phase
boundary has a singularity at (e, sp) = (eg, 0), which suggests that this point
is indeed the triple point where all three phase boundaries meet.(7)

In order to verify this and to determine the orders of the coil-spiral
and globule-spiral transitions, we measured also the distribution
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Fig. 6. Log-log plot of Pn(0), the chance to have no parallel bonds in an n-step walk.

Typical results for s<s0 and for e > ea are shown in panels (a) and (b) of
Fig. 7, respectively. While Pn(mp) decreases roughly exponentially with mp

in both plots, details are rather different. In panel (a) the exponent is
nearly independent of n, suggesting that it is nonzero also for n -> o. Thus,
the free-spiral transition happens at a positive sp. In contrast, the exponent
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Fig. 7. Distributions Pn(mp) for finding mp parallel bonds in chains of length n, normalized
to Pa(0)=1 Each panel contains curves for n= 163, 334, 664, 1307, 2561, and 5005. Panel
(a) is for £ = 0.531 < e0, while panel (b) is for £ = 0.742 > £0.
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depends strongly on n in panel (b), and seems to converge to zero for
n -> o. This is confirmed by a more careful analysis. It shows that the
collapsed-spiral transition happens exactly at sp = 0, as suggested by
Trovato and Seno.(7)

To determine the order of the transitions, we plot ea(F)mpPn(mp) with
the parameter a(s) determined such that both peaks in this function have
the same height (compare the inserts in Figs. 1 and 3). This is done for
several values of e, but only for a single chain length (n = 2561). Again the
data are normalized to P n (0 )= 1. Results are shown in Fig. 8. We see that
there are two peaks for all values of e, but that the right peak is located
at very small values of mp in the collapsed region, and moves to larger
values of mp only if we go with e below the #-point. Thus we see again that
the double peak structure is a finite-size effect in the collapsed phase, as we
had already seen in Section III, and that the collapse-to-spiral transition is
second order.

Finally, we also measured turning numbers at and near e = en. Average
squared turning numbers at the triple point (E, £p) = ( £ 0 , 0 ) and at the
point (£0, — oo) are shown in Fig. 9. Apart from the by now familiar large
deviations for small n, we see clear indications for logarithmic laws
< ( ( t / 2 ) t ) 2 > = 2 < w 2 > = 2C log n. The constants C are fully compatible
with the predictions C = 24/7 at (e0, 0)1 2 and 6/7 at (e0, - o ) 6 which are

Fig. 8. Log-log plot of e a ( e ) m p P n ( 0 ) , with a(e) such that both peaks have the same height.
Again normalization is such that P n ( 0 ) = 1.
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Fig. 9. Average squared turning number < t 2 > against log n, for (e, EI,) = (eO, 0) ( + ),
( e 0 , — o) ( x ), and (0.742,0) (A) . The straight lines are the theoretical predictions for the
first two cases.

indicated in Fig. 9 by straight lines. We have not measured turning num-
bers with similar precision in other phases, but the overall picture seems
fully compatible with that of Prellberg and Drossel.(6) On the collapsed-
spiral transition line (e >ee, £P — 0), < t 2 > seems to increase faster than
log n (see also Fig. 9), but our data are less precise there.

V. CONCLUSIONS AND DISCUSSION OF THE
PHASE DIAGRAM

We have found three phases for two-dimensional OSAWs: two of
them, the free phase and the collapsed phase, also exist in normal SAWs,
and have a turning number around zero; the third phase, the spiral phase,
is unique for OSAWs, and has a high turning number.

In Section IV, we have confirmed that the location of the transition
from the free to the collapsed phase is independent of the strength of
parallel interactions. The critical value is estimated to be e0= 1.21(2) for
the step-contact model, and EO = 0.667( 1) for the point-contact model. This
transition also exists for SAWs, and is known to be continuous.
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The transition from the collapsed to the spiral phase is found to be also
continuous, and located at ep = 0, in agreement with theoretical predictions.(6)

In Section II, we concluded that the transition from the free phase to
the spiral phase is a first-order one. For the step-contact model, we have
located three points (e + Ep, e) on the phase transition line: (0.75, — o);
(0.90, 0), and (1.04, 0.993). The results for the step-contact model are com-
bined in Fig. 10, where the phase diagram of the step-contact model is
presented. The phase diagram for the point contact model is identical
except for the detailed location of the transition lines.

The probability P n (0) of hating no parallel bond at all decreases to
zero for £ > £0, while it converges to a finite value for e<e 0 . Exactly at the
theta-point, it was conjectured by Prellberg and Drossel(6) that Pn(0) =
n - 2 / 7 . This is consistent with our data, although slightly smaller exponents
are not ruled out.

At the triple point (e,ep) = ( e 0 , 0 ) and at the point (e0, -o) , the
average squared turning numbers grow logartihmically with n with constants
as predicted by Duplantier and Saleur,(12) and Prellberg and Drossel.(6)

Fig. 10. Schematic drawing of the phase diagram of the step-contact model. The model has
three phases, a free phase, a collapsed phase, and a spiral phase. The transitions from the
collapsed phase to the free or the spiral phase are continuous, the transition from the free to
the spiral phase is of first order. The transition line from the collapsed to the spiral phase is
located at sp = 0. The transition from the free to the collapsed phase is located at e= 1.21(2).
We determined three points on the transition line from the free to the spiral phase, and
connected these points as a guide to the eye.
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